M-FILES

M-Files Web Service

Documentation

Version: 1
Author: Mikko Rantanen

20.11.2012 1/42

Contents

1 M-Files Web Service 2

1.1 Thisdocument e 2

2 Overview 3

3 Getting Started 4

3.1 PrerequiSitieso e e e e 4

3.2 Authenticating e e e e 4

3.2.1 Example: Acquiring the authenticationtoken 4

3.3 Readingthe resources i e e e 5

34 Writing the reSOUrces v v v v it e e e e e e 5

4 Request parameters 7
4.1 Authentication. e

4.2 Content type negotiation e e e e 8

5 Resources 9

5.1 ODbjects e e e e e e 9

5.1 Objects . . . o . o e e e 9

5.1.2 Objectsof type e 9

5.1.3 Object L 10

5.1.4 Object version e e e e 10

5.1.4.1 Object-Deleted 10

5.1.42 Object-History 11

5.1.43 Object-Comments 11

5.1.44 Object- Checkoutstatus 11

5.1.45 Object-Objecttitle 12

5.1.4.6 Object - Object workflow state 12

5.1.477 Object - Object thumbnail 12

5.1.4.8 Object - Relationships 13

5.1.49 Object - Relationshipcount 13

5.1.4.10 Object - Sub-objects 13

5.1.4.11 Object - Sub-objectcount 13

5.2 ODbjJeCt Properties v v v v e e e e e e e e e e e e e e e e e 14

5.2.1 Object properties it e e e e 14

5.2.2 Single object property 14

5.2.3 Properties of multiple objects oL oL L 15

5.3 Objectfiles e 15

20.11.2012 1/42

5.3.1 Objectfiles e 15

5.3.2 Objectfile e 15
5.3.2.1 Objectfile-Contents 16

5.3.2.2 Objectfile - File thumbnail 16

5.3.23 Objectfile-Filename 16

54 Uploading e e 17
5.4.1 Temporaryupload 17

5.5 USEIrSeSSION . . v v v v v v e it e e e e e e e e e e e e e e 17
5.5.1 0 Session ... e e 17

5.52 Vault .. 17

5.5.3 Authenticationtoken L. oL 18

5.6 Serverinformation e 18
5.6.1 ServerresOUICeS v v v v vt e e e e e e e e 18

5.6.2 Serverpublickey 18

5.6.3 Serverstatus e e 18

5.6.4 Vaults L 18

5.6.5 Authentication tokens 18

5.7 Vaultstructure L e e e e e e 19
5.77.1 Vaultstructure L 19

5.7.2 ODbJecttypes . . . v v i e e e e e e e e 19

5.7.3 Objecttype i e e e 19
5.7.3.1 Objecttype - Objecttypeicon 19

5.7.3.2 Object type - External source refresh 20

5.74 Objectclasses 20

5.7.5 Objectclass e e e e 20
5.7.5.1 Objectclass-Classicon 20

5.7.6 Property definitions 21
5.7.77 Property definition 21

5.78 Workflows 21

579 Workflow L 21
5.7.10 Workflow states 21
5.7.11 Workflowstate 21

5.8 Value Lists e 22
5.8.1 Valuelistitems 22

5.8.2 Valuelistitem 22
5.8.2.1 Value listitem - Value listitem title 22

5.9 VIEWS . . . oL e e e e 23
591 VIiew . . e 23

20.11.2012 2/42

5.9.2 VIEW CONtENS v v v i e e e e e 23

5.93 Viewcontents countl e e e e e e 23

5.9.4 Searchviewcontents 23

5.9.5 Favorites 23

5.9.6 Favoriteobject 24

5.9.7 Recently accessed by theuser 24

6 Resource types 25
6.1 JSONdatatypes o v v v it e e e e e e e e e 25
6.2 Classes o i e e e e 25
6.3 ObjectCreationInfo L 25
6.4 UploadInfo e 25
6.5 TypedValue 25
6.6 ExtendedObjectVersion 26
6.7 Authentication e e 26
6.8 Vault 26
6.9 PasswordChange 26
6.10 PublicKey 26
6.11 StatusResponse 27
6.12 ExtendedObjectClass e 27
6.13 WorkflowState 27
6.14 FolderContentltems e 27
6.15 ObjectWorkflowState 27
6.16 WebServiceError 27
6.17 Exceptionlnfo 28
6.18 StackTraceElement 28
6.19 ResultsiT; e 28
6.20 PrimitiveType;T; o . o 28
6.21 ObjectVersion e e e e e e e 28
6.22 ObjectFile 29
6.23 ObjVer e 29
6.24 PropertyValue e 29
6.25 SessionInfo 30
6.26 ObjType o o e 30
6.27 PropertyDef 30
6.28 Workflow 31
6.29 ValueListltem 31
6.30 ODbJID e 31

20.11.2012 3/42

6.31 Lookup e 31
6.32 VersionCommento e e e e e 32
6.33 AssociatedPropertyDef 32
6.34 FolderContentltem e 32
6.35 View . . .o e 32
6.36 ViewLocation e 32
6.37 ObjectClass e e e e 32
6.38 ClassGroup e e e e e 33
6.39 Enumerations e e e e e e 33
6.40 MFObjectVersionFlag 33
6.41 MFAuthType e 33
6.42 MFACLMode e e e 33
6.43 MFDataType o e 33
6.44 MFAutomaticValueType 34
6.45 MFFolderContentltemType 34

7 Syntax encoding 35
7.1 Typedvalues 35
T2 VIBWS .« . o o e e 35

7.3 Searchconditions 36

8 Error reporting 38
9 Compatibility 39
9.1 Servercompatibility 39
9.1.1 Fileextensions« ... i e 39

9.12 HTTPmethods 39

9.1.3 REST pathinaquery parameter 39

10 Code samples 41
10.1 Package e 41
10.2 M-Files Web Service C* Client 41
20.11.2012 4/42

1.

1.1

M-Files Web Service

M-Files Web Service allows programmatic access to M-Files through a REST-like interface. The
service provides basic read/write access to M-Files which includes reading and modifying objects and
reading document vault structures.

Unlike the traditional M-Files API, which requires ActiveX/COM support, the web service can be
used from any application that can perform HTTP requests. These include .NET applications limited
by code access security, applications running on non-Windows platforms and web applications written
in JavaScript.

This document

This document is aimed at developers interested in using M-Files Web Service for application
development. The document is divided in the following chapters:

Overview describes the general structure of M-Files Web Service.

Getting Started walks you through the basic steps required in using M-Files Web Service. The
section contains examples on authentication, reading contents from M-Files as well as editing them.

Request parameters contains a description of common parameters handled by the M-Files Web
Service request handler. These parameters are usable with most of the resources.

Resource reference contains description of all the resources provided by the M-Files Web Ser-
vice.

Type reference contains description of all the types used to represent the resources.
Enumeration reference Lists the different enumeration types used by the M-Files Web Service.

Encoding syntax contains a reference on the more complex encoding formats used by the M-Files
Web Service.

Error reporting describes the way M-Files Web Service communicates server-side exception
back to the application over the HTTP protocol.

Compatibility lists best practices that enable applications to consume M-Files Web Services
hosted on top of different server configurations.

Sample code contains a package of code samples to help in application development.

20.11.2012 5/42

2. Overview

M-Files Web Service consists of several resources and the types that represent these. Most of the
resource belong to one of the five major resource hierarchies. These hierarchies are listed below.

The objects hierarchy contains the resources used to read and edit individual objects. This
includes searching objects, reading and editing metadata, downloading files and creating new objects.

The views hierarchy contains the resources representing the document vault view hierarchy.
These resources enable applications to navigate through M-Files views. These resources are read-
only as M-Files Web Service doesn’t currently support creating or modifying views.

The vault structure hierarchy provides information on the metadata structure of the vault. The
hierarchy contains resources for object types, property definitions and workflows for example. Similar
to the views hierarchy, the structure hierarchy doesn’t currently support modification either.

The server hierarchy contains the resources representing the server-state. The resources in this
hierarchy are also accessible without a document vault level authentication. Some, such as /server/au-
thenticationtokens, can even be accessed without any authentication at all.

The session hierarchy contains information on the current session. This hierarchy is required for
Cookie-based authentication as it provides the /session and /session/vault resources.

20.11.2012 6/42

3.

3.1

3.2

3.2.1

=T R Y T N o e

Getting Started

This section demonstrates the use of M-Files Web Service by using low level HTTP requests. The
information below should be applicale to most programming languages. See Sample Code section for
sample M-Files Web Service C* client. The Sample Code package also contains the struct definitions
used in the samples below.

Prerequisities

There are three prerequisities for using MFWS: A HTTP client, MFWS URL and M-Files creden-
tials. While the last item isn’t strictly required, most of the M-Files operations require authentication
and access to a document vault.

The HTTP client depends on the programming platform and doesn’t necessarily mean a web
browser. WebClient is available for .NET framework and HttpURLConnection can be used in Java.
Browser applications can perform the HTTP requests using the raw XMLHttpRequest or a wrapper
around this such as jQuery’s $.ajax. If such HTTP API isn’t available a raw network socket APT will
do as well.

The MFWS URL and the credentials are M-Files installation specific. The easiest way to acquire
the URL is to configure M-Files Web Access, which comes with the web service. If M-Files Web Ac-
cess is configured at http://example.org/m-files, the MFWS URL is http://example.org/m-files/REST.
For the credentials please contact your M-Files administrator.

Authenticating

MFWS provides three ways to authenticate the requests: Credentials in HTTP headers, cookie-
based session and authentication tokens. Passing the credentials in the HTTP headers is the easiest
way but sacrifices some security as the plain text credentials are passed in each request. Authentica-
tion tokens improve upon this by encrypting the credentials using asymmetric encryption. Cookie-
based sessions offer some benefits in browser environments where the browser can manage the cook-
ies. The choice of authentication mechanism has no effect on the actual use of the web service. The
examples will mostly use the token based authentication.

Example: Acquiring the authentication token

An authentication token request is one of the requests that can be made unauthenticated. It is made
by POSTing the authentication credentials to the /server/authenticationtokens resource as shown in
the example 3.1 below.

var getToken = function (username, password, vault) {

st an encrypted token with the login info

S.ajax ({
url: "http://example.org/REST/server/authenticationtokens.aspx",
type: "POST",
dataType: "json",
contentType: "application/json",
data: JSON.stringify ({ Username: username, Password: password,

VaultGuid: wvault 1}),
success: processToken

1)

bi

var processToken

function (token) {

$.ajaxSetup ({ headers: { "X-Authentication" : token.Value } });
bi
Listing 3.1: Requesting the authentication token.

Once the authentication token has been acquired it can be used in the requests by passing it in the

20.11.2012 7/42

http://msdn.microsoft.com/en-us/library/system.net.webclient.aspx
http://docs.oracle.com/javase/6/docs/api/java/net/HttpURLConnection.html
https://developer.mozilla.org/en-US/docs/DOM/XMLHttpRequest
http://api.jquery.com/jQuery.ajax/

3.3

© e NN R W N~

3.4

X-Authentication header. Note authentication can be done with or without the vault GUID. Authenti-
cating without the vault GUID allows access to the server-level resources such as the document vault
collection. A vault-level authentication is required to access the information within a document vault.

Reading the resources

Once the authentication has been performed it is possible to access information within a document
vault. This information is made available in terms of resources. Save for few exceptions all of
these resources support the HTTP GET method which allows an application to request the current
representation of the resource. The example 3.2 below uses a GET request on the document vault
root view resource found at /views/items to list all the views in the document vault root.

var getRootItems = function () {
Post the object t
S.ajax ({
url: "http://example.org/REST/views/items.aspx",
type: "GET",

dataType: "json",
success: processView

Vi

var processView = function (folderContents) {
$.each(folderContents, function (i, item) {

Ignore this 1f the i1tem 1s not a view.

if(item.FolderContentItemType !== 1) return;

alert (item.View.Name);
1)
}i

Listing 3.2: Requesting the contents of the document vault root view.

Testing resource reading is easy with the browser itself. You can log in to M-Files Web Access to
establish the session. After this the GET-resources can be read with normal HTTP requests. How-
ever some browsers demand XML representation which MFWS is currently unable to provide for all
resources. At least Internet Explorer 9 is able to read the resources in JSON format.

Writing the resources

Just like reading resources, modifying them by deleting or editing existing ones or creating new
ones is done with basic HTTP requests as well. Each of these different operations has its own HTTP
verb: POST for creating, PUT for editing and DELETE for deleting. However unlike GET, these
other verbs are not available for all resources. The resource reference contains information on the
resources and the methods available for them. The example 3.3 below uses POST request on the
documents collection resource found at /objects/0 to create a new document in the document vault.

Especially older IIS versions (5.1, 6.0) make it harder to use non GET or POST verbs with ASP.Net
applications. While M-Files Web Service supports pure PUT and DELETE requests, the default I1IS
configuration for M-Files Web Access doesn’t enable PUT and DELETE requests for 11S. For this rea-
son M-Files Web Service supports a ?_method=VERB query parameter which is the recommended
way to communicate the PUT and DELETE intents. See compatibility for more information on this.
Example 3.4 below shows a PUT request on the check-out state resource.

20.11.2012 8/42

© 0 NN R W N —

N - T T N U R SR

var createObject = function () {
// Post the object data.
$.ajax ({

url: "http://example.org/REST/objects/0.aspx",
type: "POST",
dataType: "json",
contentType: "application/json",
data: JSON.stringify ({
PropertyValues: [{
// Document name
PropertyDef: O,
TypedValue: { DataType: 1, Value: "Invoice" }
b A
// "Single File
PropertyDef: 22,
TypedValue: { DataType: 8, Value: false }
boo A
// Class.
PropertyDef: 100,
TypedValue: { DataType: 9, Lookup: { Item: 0 } }
}1’
Files: []
1)y
success: processDocument
P
i

var processDocument = function (objectVersion) {
alert (objectversion.Title + " created successfully.");

Vi
Listing 3.3: Creating a new document.

var checkOut = function (type, id, version) {
// Construct the URL.
// .../REST/objects/ (type)/(id)/(version)/checkedout?_method=PUT
var url = "http://example.org/REST/objects/" +
[type, id, version].join("/") +

"/checkedout .aspx?_method=PUT";

// Request an encrypted token with the login information.

S.ajax ({
url: url, type: "POST", dataType: "json",
contentType: "application/json",

data: JSON.stringify ({ Value: 2 /% Checked out to me */ }),
success: modifyObject
IO
}i

var modifyObject = function (objectVersion) {
// Object 1is checked out.
i
Listing 3.4: Performing a check out.

20.11.2012 9/42

4,

4.1

Request parameters

In addition to the resource specific parameters there are few request parameters that affect the way
M-Files Web Service handles the requests with all resources.

Authentication

Almost all of the M-Files Web Service resources require either an application-level or vault-
level authentication. There are three alternate ways to authenticate the requests: Two header-based
approaches using either plain text credentials or encrypted authentication token or a cookie based
approach using the /session and /session/vault resources.

The headers used in the header-based authentication are listed below in table 4.1.

Table 4.1: Authentication headers

Header Description

X-Username Plain text username.

X-Password Plain text password.

X-WindowsUser Value of true if M-Files should authenticate the username

and password against Windows domain. Omit this header or
use the value of false to authenticate the user as M-Files
user.

X-Domain Windows domain for Windows authentication. The header
value can be empty or the header can be omitted to use the
default domain.

X-Authentication Encrypted authentication token. This can be requested
through /server/authenticationtokens and /session/authenti-
cationtoken resources.

X-Vault Document vault GUID. Application-level resources such as
the document vault list can be accessed even if this header is
missing.

X-ComputerName Unique identifier for the client computer. This is used mainly

to distinguish check-outs from different computers. This
header always overrides the computer name - even if an au-
thentication token containing a computer name is used.

The authentication token can be created with or without the vault-information. If the token is created
without the vault-information it provides only an application-level token. Application-level authenti-
cation token can be used to request the vault listing from the server in which case the listing contains
vault-level authentication tokens or alternatively the application-level authentication token may be
combined with the X—Vault header to acquire a vault-level authentication context.

M-Files Web Service also supports passing the header values as query parameters in case the header
values cannot be modified for one reason or another. The mapping between headers and query
parameters is listed in table 4.2 below. In case a parameter is defined both as a header and as a
query parameter the header value is used.

20.11.2012 10/42

Table 4.2: Authentication headers

Header Query parameter
X-Username username
X-Password password
X-WindowsUser windowsuser
X-Domain domain
X-Authentication auth

X-Vault vault
X-ComputerName computername

4.2 Content type negotiation

HTTP protocol defines two headers that are used to negotiate the content types used within the
requests and the responses. These are the Content-Type and Accept headers. Content-Type header
describes the type of content transmitted in the request or response body while the Accept header is
sent by the client to the server to inform the server what kind of content the client prefers.

M-Files Web Service acknowledges this header and currently the only supported value for it is
application/json save for few resource-specific exceptions. These exceptions are mainly in the re-
sources that accept or respond with file contents. There is experimental support for application/xml
or text/xml for XML serialization instead of JSON serialization but this has known issues. If
the Content-Type or Accept headers are missing, or they contain only unsupported content types,
application/json is used.

Do define the Content—-Type and Accept headers when possible. Future versions of M-Files
Web Service might add more content options such as application/html, application/xml
or application/x—www—form-urlencoded. Currently passing application/html as
the Accept header results in JSON serialization but if M-Files Web Service starts supporting
application/html this will change and requires modifications to the application.

20.11.2012 11/42

5.

5.1
5.1.1

5.1.2

Resources

The resources make up most of the M-Files Web Service interface. These resources allow users
to request and modify information stored within M-Files. See 2 for more information on how to use
these resources.

Each web service resource has its own URI or URI pattern by which it can be referenced in the
HTTP requests. These patterns contain placeholder tokens which can be substituted for different
values when making the request. These tokens are listed below in table 5.1.

Table 5.1: MFWS URI tokens

Token Regex expansion ~ Meaning
(type) (\d+) Object type of an object.
(objectid) (\d+le["/]) ID of an object or value list item. External IDs are prefixed with ‘e’.
(version) (\d+|latest]) Object version. Optional, will refer to the latest if omitted.
(file) (\d+) Object file ID.
(id) (\d+) A numerical ID used with different structures.
(path) (["/1+/)* View path. May be completely empty. See 7.2 for encoding reference.
Objects
Objects
/objects

Collection of objects in the document vault.

GET Results<ObjectVersion>

Retrieves objects. The amount of returned objects is limited by the server. See
search encoding for how to further specify the objects.

Notes Earlier 9.0.3372.x M-Files versions have an issue preventing the use of this re-
source. The search within root view (/views/objects) resource is identical to this
one and can be used as a working alternative.

Objects of type
/objects/ (type)
Collection of objects filtered by object type.

GET Results<ObjectVersion>

Retrieves objects of the given type. The amount of returned objects is limited by
the server. See /objects for how to further specify the objects.

POST ObjectCreationInfo
Returns ObjectVersion

Creates a new object.

20.11.2012 12/42

5.1.3

514

5.1.41

Object
/objects/ (type)/ (objectid)

A single object.

Object version
/objects/ (type)/ (objectid)/ (version)

A single object version.

GET ExtendedObjectVersion
Retrieves the object information.

Tinclude A list of additional fields to include in the ExtendedObjectVersion. Currently
only ’properties’ is supported.

“properties’ includes the Properties field in the returned object.

DELETE ObjectVersion, HITP 204

Destroys the object version. As checked in versions cannot be destroyed this can
only be performed on a checked out version and is equivalent to an undo checkout.
Returns the new ObjectVersion information if it is still visible to the user.

See /objects/(type)/(objectid)/deleted for marking the object as deleted.

THorce If true, DELETE will perform an undo checkout even if the object isn’t checked out
to the current user on this computer.

?allVersions If true, DELETE will destroy the whole object. Unlike normal DELETE, this will
not require the object to be checked out.

Will return HTTP 204 on successful destroy.

Object properties
Object - Deleted

/objects/ (type) / (objectid) /deleted
Resource representing the Deleted-state of an object.

GET bool

Retrieves the deleted status of the object.

PUT bool
Returns ObjectVersion

Sets the deleted status of the object.

Notes The deleted status is tracked by the Deleted property and this resource is provided
as a convenient access to that. It is still possible to alter that property directly using
/objects/(type)/(objectid)/(version)/properties or similar resource.

20.11.2012

13/42

5.1.4.2 Object - History

5143

51.4.4

/objects/ (type) / (objectid) /history

Resource listing the full object version history.

GET

Notes

ObjectVersion|[]

Retrieves all the available versions of the object.

The use of this resource is recommended over just traversing through all the possi-
ble versions between 1 and the latest one. Some of these versions might be deleted
for various reasons which makes them unavailable. This resource retrieves only the
available versions.

Object - Comments

/objects/ (type) / (objectid)/ (version) /comments

Resource listing the full object comment history.

GET

PUT

Returns

Notes

VersionComment []

Retrieves the comments written on the object.

string

ExtendedObjectVersion

Sets the comment on an object.

Adding a comment might create a new version of the object if it isn’t checked out.

Object - Check out status

/objects/ (type) / (objectid) / (version) /checkedout

Resource representing the check out state of the object.

GET

PUT

Returns

Notes

MFCheckOutStatus

Retrieves the current check out status.

MFCheckOutStatus
ObjectVersion

Sets the check out status. This is allowed only when the object isn’t checked out to
someone else, that is when the check out status isn’t CheckedOut.

See DELETE on /objects/(type)/(objectid)/(version) for undoing the check out.

20.11.2012

14/42

5.1.4.5 Object - Object title

5.1.4.6

5.1.4.7

/objects/ (type)/ (objectid)/ (version)/title

Resource representing the object title.

GET

PUT

Returns

Notes

string

Retrieves the object name

string

ObjectVersion

Sets the object name

If the object has an automatic title PUT will result in HTTP 401.

Object - Object workflow state

/objects/ (type)/ (objectid) / (version) /workflowstate

Resource representing the object workflow state.

GET

PUT

Returns

ObjectWorkflowState

Retrieves the current workflow state.

ObjectWorkflowState
ExtendedObjectVersion

Sets the workflow state.

Object - Object thumbnail

/objects/ (type) / (objectid)/ (version) /preview

The object thumbnail.

GET Stream (application/png)
Retrieves the object preview. If a preview cannot be generated the service responds
with a HTTP 404.
Horce If true, the server streams an empty image instead of giving a HTTP 404 response
if the preview cannot be generated.
Isize Specifies square dimensions. Defaults to 32. This also works with the force-
parameter by forcing the empty image to have the specified dimensions.
Iwidth Specifies preview width. Overrides size.
Theight Specifies preview height. Overrides size.
20.11.2012 15/42

5.1.4.8

5.1.4.9

5.1.4.10

5.1.4.11

Object - Relationships
/objects/ (type)/ (objectid)/ (version)/relationships

A collection of related objects.

GET ObjectVersion[], Lookupl[]
Retrieves related objects.
Tobjtype Only returns related objects of a certain object type.

?direction Only returns related objects with the specified direction of relationship.

"from’ considers only the relationships specified on the current object.
’to’ considers only the relationships originating from the related objects.
"both’ is the default behaviour which considers both directions.

Ttype Specifies the response type. ’lookup’ will make the response to be serialized as
Lookup[] while the default *objectversion’ will result in the response being serial-
ized as ObjectVersion[]

Object - Relationship count
/objects/ (type) / (objectid)/ (version) /relationships/count
The count of the related objects.

GET int

Retrieves the amount of related objects.

Tobjtype See /objects/(type)/(objectid)/(version)/relationships
?direction See /objects/(type)/(objectid)/(version)/relationships
Ttype See /objects/(type)/(objectid)/(version)/relationships

Object - Sub-objects
/objects/ (type) / (objectid)/ (version) /subobjects
A collection of sub-objects.
GET ObjectVersion]|]
Retrieves the sub-objects.
Object - Sub-object count
/objects/ (type) / (objectid)/ (version) /subobjects/count
The count of the sub-objects.

GET int

Retrieves the amount of sub-objects.

20.11.2012 16/42

5.2 Object properties

5.2.1

5.2.2

Object properties

/objects/ (type) / (objectid)/ (version) /properties

The properties of an object.

GET

MHorDisplay

POST

Returns

PUT

Returns

PropertyValue[]
Retrieves the object properties

If true, the response will be filtered and sorted for display. Each object has several
built-in properties which usually aren’t shown to the user. This parameter can be
used to leave those out.

PropertyValue[]
ExtendedObjectVersion

Sets the posted properties on the object. If the object already has a value for the
sent properties this value will be overridden.

PropertyValue[]
ExtendedObjectVersion

Sets the object properties. Properties not included in the request are removed from
the object.

Single object property

/objects/ (type)/ (objectid)/ (version) /properties/ (id)

A single property of an object.

GET

PUT

Returns

DELETE

PropertyValue

Retrieves a single property value

PropertyValue
ExtendedObjectVersion

Sets a single property value

ExtendedObjectVersion

Removes a single property value

20.11.2012

17/42

5.2.3 Properties of multiple objects

5.3
5.3.1

5.3.2

/objects/properties

A resource that allows access to properties of multiple objects.

GET

Example

POST

Returns

Notes

Object files
Obiject files

PropertyValue[] []

Retrieves properties of multiple objects. The object versions are specified in the
URI seperated with semicolons.

GET /objects/properties;0/5/6;0/112/1latest;136/2/3

ObjVer([]
PropertyValue[] []

Retrieves properties of multiple objects. The object versions are specified in the
request body.

The properties returned in the response are arranged in the same order as the object
versions sent in the request. This information should be used to match the correct
PropertyValue[] to the correct object version.

/objects/ (type)/ (objectid)/ (version)/files

Files belonging to an object.

GET

POST

Returns

Object file

ObjectFile[]

Retrieves the object file information for all the files on an object.

Stream (application/octet-stream, multipart/form-data)
ObjectVersion

Adds a new file to the object.

/objects/ (type) / (objectid)/ (version)/files/ (file)

A single file on an object.

GET

DELETE

ObjectFile

Retrieves the object file infromation for the object file.

HTTP 203

Removes the file from the object.

20.11.2012

18/42

5.3.2.1

5.3.2.2

5.3.2.3

Object file properties

Object file - Contents

/objects/ (type)/ (objectid)/ (version)/files/ (file) /content

The contents of a single file.

GET

?mac

X-Hmac

PUT

Returns

Notes

Stream (application/octet-stream)
Retrieves the object file contents.
If true, appends a SHA-512 message authentication code at the end of the stream.

Specifies the HMAC key
Stream (application/octet-stream, multipart/form-data)

ObjectVersion

Replaces the object file contents.

Supports Range header on GET:

Object file - File thumbnail

/objects/ (type) / (objectid)/ (version)/files/ (file) /preview

File thumbnail.

GET

MHorce
Isize
Iwidth
Theight

Stream (application/png)

Retrieves the file preview. If a preview cannot be generated the service responds
with a HTTP 404.

See /objects/(type)/(objectid)/(version)/preview
See /objects/(type)/(objectid)/(version)/preview
See /objects/(type)/(objectid)/(version)/preview

See /objects/(type)/(objectid)/(version)/preview

Object file - File name

/objects/ (type) / (objectid)/ (version)/files/ (file)/title

The file name of an object file.

GET

PUT

Returns

string

Retrieves the current object file name.

string
ObjectVersion

Sets the name on the object file.

20.11.2012

19/42

5.4
5.4.1

5.5
5.5.1

5.5.2

Uploading
Temporary upload

/files

A collection of temporary uploads.

POST Stream (application/octet-stream, multipart/form-data)
Returns UploadInfo, UploadInfol]

Stores a temporary file on the server and assigns an ID for it.

Once uploaded the file can be used in object creation.

User session
Session

/session
Current user session information.

GET SessionInfo

Retrieves the current session information.

PUT Authentication
Returns Vault[]

Performs login using the credentials in the request.

DELETE HTTP 204

Performs a logout for the session.

Vault

/session/vault

The document vault attached to the current session.

GET Vault

Retrieves the current vault.

PUT Vault
Returns Vault

Sets the current vault.

The request must have either the GUID or the Name of the vault filled. In case both
of these are filled the GUID is used. If only the name is filled and there are multiple
vaults with the same name, the server will respond with HTTP 409.

20.11.2012

20/42

5.5.3 Authentication token

/session/authenticationtoken
Authentication token representing the current session.
GET string
Retrieves the authentication token for the current session.

5.6 Server information
5.6.1 Server resources

/server

Server-level resources.

5.6.2 Server public key
/server/publickey
The server public key used to secure messages between the client and the server.
GET PublicKey
Used to encrypt secure information before sending it to the server.

5.6.3 Server status

/server/status
Server status.

GET StatusResponse

Retrieves the server status. If the M-Files server is unavailable the service responds
with HTTP 503.

5.6.4 Vaults
/server/vaults
Collection of vaults on the server.
GET Vault[]

Retrieves the vaults from the server

?online If true, return only online vaults.
5.6.5 Authentication tokens
/server/authenticationtokens
Transient resource used in calculating new authentication tokens.
POST Authentication

Returns string

Creates a new authentication token based on the authentication information.

20.11.2012 21/42

5.7
5.7.1

5.7.2

5.7.3

5.7.3.1

Vault structure

Vault structure

/structure

Vault metadata structure information.

Object types

/structure/objecttypes

Collection of object type information.

GET

Ttype

Notes

Object type

ObjType[]
Retrieves information on all object types.

Only returns the object types of specific kind.

‘real’ returns only real object types. ’valuelist’ returns only non-object type val-
uelists. ’both’ is the default which returns all object types.

Internally M-Files considers both valuelists and the real object types as object types.
By default this resource will return both kinds of types. If you want only one kind
use the type-parameter.

/structure/objecttypes/ (type)

Information on a single object type.

GET

ObjType

Retrieves information on an object type.

Object type properties

Object type - Object type icon

/structure/objecttypes/ (type)/icon

GET

7size

Notes

Stream (application/png)
Retrieves the object type icon.

Icon dimension. Default is 16.

The icons supports only certain sizes and the real size on the received icon in the
respponse might differ from the specified size.

20.11.2012

22/42

5.7.3.2 Object type - External source refresh

5.7.4

5.7.5

5.7.51

/structure/objecttypes/ (type) /refreshstatus

The refresh status for an external object type.

PUT

Returns

Object classes

MFRefreshStatus
MFRefreshStatus

Sets the refresh status to either Full or Quick.

/structure/classes

Collection of object class information.

GET

Tobjtype

Tbygroup

Object class

ObjectClass[], ClassGroupl]
Retrieves information on all object classes.

Object type ID. Filters the returned classes by object type. Only classes belonging
to the object type are returned.

If true, returns the object classes in class groups.

/structure/classes/ (id)

Information on a single object class.

GET

?1include

ExtendedObjectClass
Retrieves information on an object class.

Comma separated list of additional data sets to return.

Currently only “templates” is supported which will will cause the response to in-
clude a list of available templates available to the class.

Object class properties

Object class - Class icon

/structure/classes/ (id) /icon

GET

7size

Notes

Stream (application/png)
Retrieves the object class icon.

Icon dimension. Default is 16.

The icons supports only certain sizes and the real size on the received icon in the
respponse might differ from the specified size.

20.11.2012

23/42

5.7.6 Property definitions
/structure/properties
Collection of property definitions.
GET PropertyDef[]
Retrieves information on all property definitions.
5.7.7 Property definition
/structure/properties/ (id)
Information on a single property definition.
GET PropertyDef
Retrieves information on a single property definition.

5.7.8 Workflows

/structure/workflows
Collection of workflows.

GET Workflow([]

Retrieves information on all workflows.

5.7.9 Workflow

/structure/workflows/ (id)
Information on a single workflow.
GET Workflow
Retrieves information on a single workflow.

5.7.10 Workflow states

/structure/workflows/ (id) /states

Collection of states under a single workflow.

GET WorkflowStatel[]
Retrieves information on all workflow states of the given workflow.

?currentstate ‘null’ or state ID. Restricts the list of returned states to those that are available as
valid states from the current state.

5.7.11 Workflow state

/structure/workflows/ (id) /states/ (id)

Information on a single workflow state.

GET WorkflowState

Retrieves information on the specific workflow state.

20.11.2012 24/42

5.8
5.8.1

5.8.2

5.8.2.1

Value Lists
Value list items

/valuelists/ (id) /items

Collection of value list items for a single value list.

GET Results<ValueListItem>
Retrieves value list item information.
Ipropertydef Filters the items using the filter defined on the property definition.
N Filter items using defined property ID and its value. See search conditions.
Iparent Filters items by parent item.
Towner Filters items by owner item.
Tname Filter using name. Supports wildcards.
Tpage Retrieves only one page. Default page size is 100.
Ipagesize Defines page size. If page size is defined, retrieve only one page, default to first.
POST ValueListItem
Returns ValueListItem
Creates a new value list item in the value list.

Value list item

/valuelists/ (id) /items/ (objectid)

Single value list item information.

GET ValueListItem

Retrieves a single value list item information.

DELETE ValueListItem

Deletes a value list item.

Value list item properties

Value list item - Value list item title

/valuelists/ (id)/items/ (objectid) /title

The title of a value list item.

GET string

Retrieves the value list item title.

PUT string

Returns ValueListItem

Changes the value list item title.

20.11.2012

25/42

5.9
5.9.1

5.9.2

5.9.3

5.9.4

5.9.5

Views
View
/views/ (path)

A single view in the view hierarchy.

View contents

/views/ (path)/items

Contents of a single view.

GET FolderContentItems
Retrieves the view contents

View contents count

/views/ (path) /items/count

The count of items within the single view.

GET int

Retrieves the amount of items in the view.

Search view contents

/views/ (path) /objects

All objects found within the view.

GET Results<ObjectVersion>
Searches for objects within the view

Favorites

/favorites
Collection of favorited objects.
GET ObjectVersion|]

Retrieves favorite objects.

POST ObjID

Returns ExtendedObjectVersion

Adds an object to the favorites.

20.11.2012

26/42

5.9.6 Favorite object

5.9.7

/favorites/ (type)/ (objectid)

A single favorite object.

GET

DELETE

ObjectVersion

Retrieves object version information on the favorite object.

ExtendedObjectVersion

Removes an object from favorites.

Recently accessed by the user

/recentlyaccessedbyme

A collection of objects recently accessed by the current user.

GET

POST

Returns

ObjectVersion|[]

Retrieves the recently accessed objects.

ObjID

ExtendedObjectVersion

Notifies object access and adds the object to the recently accessed objects.

20.11.2012

27/42

6. Resource types

The request and response formats of resources are defined in terms of common types. Most of the
types derive directly from those of M-Files API while some of the types are unique to M-Files Web
Service.

6.1 JSON data types

When the object instances of these types are transmitted over HTTP protocol they are serialized
using one of the supported serialization formats, which currently include only JSON currently. Since
M-Files Web Service uses richer type system than offered by JSON format, some of the types are
represented using other types. The JSON format used by the types in M-Files Web Service are
described in table 6.1 below.

Table 6.1: Data types of the resource type properties.

Type JSON serialization format

string JSON string.

int JSON number.

double JSON number.

bool JSON boolean.

DateTime Converted to ISO-8601 format and serialized as string.
Arrays JSON array.

Other objects ~ JSON object.

Enumerations JSON number.

6.2 Classes
6.3 ObjectCreationinfo

Specifies the information required when creating a new object.

PropertyValues : PropertyValuel[]

Files : UploadInfol]

6.4 Uploadinfo

Contains the information on a temporary upload.

UploadID : int
Title : string
Extension : string
Size : long

6.5 TypedValue

A ’typed value’ represents a value, such as text, number, date or lookup item.

20.11.2012 28/42

http://en.wikipedia.org/wiki/ISO_8601

DataType . MFDataType

HasValue ¢ bool
Value : object
Lookup : Lookup
Lookups : Lookupl[]
DisplayValue : string
SortingKey ¢ string
SerializedValue : string

6.6 ExtendedObjectVersion

An object version with extended properties. Inherits from ObjectVersion.

Properties : PropertyValue []

6.7 Authentication

Authentication details.

Username ¢ string
Password ¢ string
Domain : string
WindowsUser : bool
ComputerName ¢ string
VaultGuid : string
Expiration : DateTime?
ReadOnly : bool
URL ¢ string
Method ¢ string
6.8 Vault
Vault information.

Name ¢ string
GUID : string
Authentication ¢ string

6.9 PasswordChange

Information required for changing password.

OldpPassword ¢ string

NewPassword ¢ string

6.10 Publickey

Server public key information.

20.11.2012

29/42

6.11

6.12

6.13

6.14

6.15

6.16

Exponent : string

Modulus ¢ string

StatusResponse

Response for status requests.

Successful ¢ bool
Message : string
ExtendedObjectClass

An object class with extended properties. Inherits from ObjectClass.
AssociatedPropertyDefs : AssociatedPropertyDef[]
Templates ¢ ObjectVersion|]
WorkflowState

Workflow state information.
Name : string
D : int
Selectable ¢ bool
FolderContentltems

An object version with extended properties. Inherits from ObjectVersion.

Path : string
MoreResults : bool
Items : FolderContentItem[]
ObjectWorkflowState

A workflow state on an object.
State ¢ PropertyValue
StateID ¢ int
StateName : string
Workflow : PropertyValue
WorkflowID ¢ int
WorkflowName : string
VersionComment : string
WebServiceError

M-Files Web Service error object.

20.11.2012 30/42

6.17

6.18

6.19

6.20

6.21

Status : int

URL ¢ string
Method ¢ string
Exception . ExceptionInfo
Exceptioninfo
Message : string
InnerException ¢ ExceptionInfo
Stack . StackTraceElement []
StackTraceElement

M-Files Web Service error stack trace element.
FileName : string
LineNumber : int
ClassName ¢ string
MethodName : string
Results;T¢,

Results of a query which might leave only a partial set of items.
Items T[]
MoreResults ¢ bool
PrimitiveType;T¢,
Value : T
ObjectVersion

Based on M-Files API.

20.11.2012

31/42

6.22

6.23

6.24

AccessedByMeUtc
CheckedOutAtUtc
CheckedOutTo
CheckedOutToUserName
Class

CreatedUtc

Deleted

DisplayID

Files

HasAssignments
HasRelationshipsFromThis
HasRelationshipsToThis
IsStub

LastModifiedUtc
ObjectCheckedOut
ObjectCheckedOutToThisUser
ObjectVersionFlags
ObjVer

SingleFile
ThisVersionLatestToThisUser
Title

VisibleAfterOperation

ObjectFile
Based on M-Files APL
ChangeTimeUtc
Extension
D
Name

Version

ObjVer
Based on M-Files APL
D
Type
Version
PropertyValue
Based on M-Files APL

DateTime
DateTime
int
string
int
DateTime
bool
string
ObjectFile []
bool
bool
bool
bool
DateTime
bool
bool
MFObjectVersionFlag
ObjVer
bool
bool
string

bool

DateTime
string
int
string

int

int
int

int

20.11.2012

32/42

6.25

6.26

6.27

PropertyDef

TypedValue

Sessioninfo
Based on M-Files APL

AccountName
ACLMode
AuthenticationType
CanForceUndoCheckout
CanManageCommonUISettings
CanManageCommonViews
CanManageTraditionalFolders
CanMaterializeViews
CanSeeAllObjects
CanSeeDeletedObjects
InternalUser
LicenseAllowsModifications

UserID

ObjType
Based on M-Files API.

AllowAdding
CanHaveFiles
DefaultPropertyDef
External

ID
NamePlural
Name
OwnerPropertyDef
ReadOnlyPropertiesDuringInsert
ReadOnlyPropertiesDuringUpdate

RealObjectType

PropertyDef
Based on M-Files API.

int

TypedValue

string
MFACLMode
MFAuthType
bool

bool

bool

bool

bool

bool

bool

bool

bool

int

bool
bool
int
bool
int
string
string
int
int []
int []

bool

20.11.2012

33/42

6.28

6.29

6.30

6.31

AllObjectTypes bool
AutomaticValue string
AutomaticValueType MFAutomaticValueType
BasedOnValueList bool
DataType MFDataType
ID int
Name string
ObjectType int
ValueList int
Workflow

Based on M-Files APL
ID int
Name string
ObjectClass int
ValueListltem

Based on M-Files APIL
DisplayID string
HasOwner bool
HasParent bool
ID int
Name string
OwnerID int
ParentID int
ValueListID int
ObjID

Based on M-Files APL
ID int
Type int
Lookup

Based on M-Files APL
Deleted bool
DisplayValue string
Hidden bool
Item int
Version int
20.11.2012 34/42

6.32

6.33

6.34

6.35

6.36

6.37

VersionComment
Based on M-Files APL
LastModifiedBy
Objver
StatusChanged

Comment

AssociatedPropertyDef
Based on M-Files API.
PropertyDef
Required
FolderContentltem
Based on M-Files API.

FolderContentItemType

PropertyValue
ObjVer
PropertyValue

PropertyValue

int

bool

MFFolderContentItemType

ObjectVersion ObjectVersion
PropertyFolder TypedValue
TraditionalFolder Lookup
View View
View

Based on M-Files APL
Common bool
ID int
Name string
Parent int
ViewLocation ViewLocation
ViewLocation

Based on M-Files APL
OverlappedFolder TypedValue
Overlapping bool
ObjectClass

Based on M-Files APL.
ID int
Name string
NamePropertyDef int
Workflow int
20.11.2012 35/42

6.38

6.39
6.40

6.41

6.42

6.43

ClassGroup
Based on M-Files API.

Name string
Enumerations
MFObjectVersionFlag

0 None

1 Completed

2 HasRelatedObjects
MFAuthType

0 Unknown

1 LoggedOnWindowsUser
2 SpecificWindowsUser
3 SpecificMFilesUser
MFACLMode

0 Simple

1 AutomaticPermissionsWithComponents
MFDataType

0 Uninitialized

1 Text

2 Integer

3 Floating

5 Date

6 Time

7 Timestamp

8 Boolean

9 Lookup

10 MultiSelectLookup
11 Integer64

12 FILETIME

13 MultilLineText

14 ACL

20.11.2012

36/42

6.44 MFAutomaticValueType

0 ¢ None

1 : CalculatedWithPlaceholders
2 : CalculatedWithVBScript

3 : AutoNumberSimple

4 ¢ WithVBScript

6.45 MFFolderContentltemType

0 : Unknown

1 ¢ ViewFolder

2 : PropertyFolder

3 : TraditionalFolder
4 : ObjectVersion

20.11.2012 37/42

7. Syntax encoding
7.1 Typed values

The value part of the typed value is encoded according to the data type. The encoding does not
include the data type as this is often defined by the situation. If this is not the case the data type must
be communicated together with the encoded value. Table 7.1 lists the different encoding schemes for

different data types.
Table 7.1: Typed value encoding by data type.
Data type Encoding
ACL Not implemented.
Boolean ‘true’ / ‘false’
Time, Date, Timestamp ISO format string.
Floating Real number as string
Integer, Integer64 Integer as string
Lookup Integer as string. Lookup ID.
Multi-Select Lookup Comma separated Lookup-encoding.
Uninitialized Not implemented.
Text, Multi-Line Text string
7.2 Views

View paths are encoded in the URL path based on the level hierarchy. Levels refer to views,
traditional folders or virtual folders defined with typed values. The encoding format is described
below in table 7.2. Example 7.1 contains encoding samples for different views.

Table 7.2: ABNF of the view path encoding.

viewpath = /" / level *level [/'
level = /" (view-level / folder-level / typed-value)
view-level = ‘v' number ; Normal view
folder-level = 'y’ number ; Traditional folder
typed-value = data-type data-value
data-type = ‘T’ / ‘M’ ; Text, MultilLineText
/ *I' / *J" / ‘R’ ; Integer, Integer64, Real number
/ ‘D' / C" / ‘E' / ‘P’ ; Date, Time, FILETIME, Timestamp
/ ‘L' / ‘S’ ; Lookup, MSLU
/ ‘=" / ‘A’ / ‘B’ ; Uninitialized, ACL, Boolean
data-value = segment-nz

; URI path segment as defined in RFC-3986. (ie. legal URI text,
excluding /")

; The value is encoded according to 5.1 and then double URI encoded.

20.11.2012 38/42

© 0 N N R W N —

7.3

/) RAA .
// Root:

$.get ("http //example org/REST/views/items.aspx", callback, "json");

"q

$.get ("http://example org/REST/v1ews/V133/1tems aspx", callback, "Json");

// [Corporation (IT)" of Lt.
$.get ("http //example org/REST/v1€ws/V133/V136/L141/1tems aspx" callback,
n - n

json) ;

view (View ID 123)

$.get("http //example org/REST/v1ews/V123/TMFWA&252O 252F%2520MFWS/items.aspx",

callback, "json");

$.get ("http://example.org/REST/views/V123/TMFWA %252F MFWS/items.aspx",
callback, "json");

Listing 7.1: View encoding examples

The double uri encoding is not strictly required in most cases. If the text value passed in the URI
contains a forward slash (°/’) then the double encoding must be used. Without double encoding the

forward slash will be interpreted as a view level separator.

Search conditions

Search conditions are conveyed as query parameters. The parameter starts with an expression
specifier. This is followed by the operator followed by the value. The condition encoding is described

in table 7.3. Example 7.2 contains some encoding samples for different searches.

Table 7.3: ABNF of the search condition encoding.

conditions = condition *(‘&’ condition)
condition = expression operator value
expression = ‘g’ ; Quicksearch
/ ‘p’ number ; PropertyValueExpression
/ ‘vl’ number ; TypedValueExpression (Value list search)
/ ‘o’ ; Object Type
/ ‘d’ ; Is Deleted
operator = [‘'] op-mod
op-mod = ‘=’ ; Equal
/ ‘<<='" / “<=' ; Less, Less or Equal
/ ‘>>=' / “>=' ; Greater, Greater or Equal
/ “x*=! / Y%=/ . Matches wildcard, Contains
/ ‘&' ; Starts With
value = null-value / id-value / typed-value-encoded-value / ‘include’
; See 5.1 for the typed value encoding.
; ‘include’ is a special value available for the ‘Is Deleted’ condition.
null-value = ‘%00’ ; Equals null
id-value = number / ‘e’ string

\

; ‘e’ specifies external ID condition. 1ID is URI escaped.

20.11.2012

39/42

T

// Quick search for "specification"
$.get ("http://example.org/REST/objects.aspx?g=specification", callback, "json"
)i

// Quick search for "web service"
$.get ("http://example.org/REST/objects.aspx?g=web service", callback, "json");

// Objects where the title contains "m-files"
$.get ("http://example.org/REST/objects.aspx?p0*=m-files", callback, "json");

// Deleted documents (Object type ID 0).
$.get ("http://example.org/REST/objects.aspx?d=true&o=0", callback, "json");

// Quick search for "web service". Also include deleted objects.
$.get ("http://example.org/REST/objects.aspx?g=web service&d=include", callback,
n - n
json) ;

// Note: Searching by external ID can be done with direct object reference.
// Customer with object ID "123A"
$.get ("http://example.org/REST/objects/136/el23A.aspx", callback, "json");

Listing 7.2: Search encoding examples

Note that unlike M-Files API, M-Files Web Service doesn’t return deleted objects by default. Specify
d=include condition to include the deleted objects as well.

20.11.2012 40/42

8. Error reporting

Inevitably at some point there will be an error during one of the M-Files Web Service requests.
When this happens, M-Files Web Service interrupts the request processing and responds with a 4xx
or 5xx HTTP status code instead.

The HTTP status codes in the 4xx and 5xx range indicate an error during the request. If the error
happened inside M-Files Web Service, the error description is included in the HTTP response body
as a WebServiceError object. The object contains Message property which should provide more
information on the error.

The message property in the WebServiceError departs from the traditional M-Files error report-
ing familiar from M-Files APL. In M-Files API, especially for argument errors, the range of different
error messages is quite small. This makes it possible to localize all the error messages but it also
results in less specific messages. M-Files Web Service contains more specific error messages at the
cost of localization.

WebServiceError also contains the original stack trace from the server. This stack trace is
valuable if there is ever a need to contact M-Files support.

The returned JSON also contains ErrorCode property. Do not use this for anything. The informa-
tion in this property is wrong and the property will be changed in future M-Files versions.

20.11.2012 41/42

9.
9.1

9.11

9.1.2

Compatibility
Server compatibility

M-Files Web Service requires .NET Framework 4 and IIS 5.1 or newer on the server. There are
couple of features which enable better support for older IIS versions but might require changes in the
requests.

File extensions

M-Files Web Service requires .NET Framework 4 and IIS 5.1 or newer on the server. Older IIS
versions (5.1 and 6.0) use file extensions to map incoming HTTP requests to different extensions such
as ASP.Net. M-Files Web Service supports .aspx and .ashx extensions for all resource URIs. These
make it easier to invoke the resources in case the web service is hosted on top of IIS 5.1 or IIS 6.0
server and have no real effect on the actual resource.

When writing an application that might be consuming M-Files Web Service from an older IIS server,
do use either . aspx or . ashx extension in the requests. This makes it easier to configure the server
and enables the default M-Files Web Access deployment to be used.

HTTP methods

Another compatibility hurdle caused by the older IIS versions is the support for PUT and DELETE
methods in the HTTP requests. The older IIS versions forward only the GET and POST requests to
ASP.Net by default. M-Files Web Service supports using a _method query parameter to override the
HTTP method in the request. See table 9.1 below for how to use this parameter.

Table 9.1: Using _method parameter.

Original request Compatible request

GET /REST/resource GET /REST/resource

POST /REST/resource POST /REST/resource

PUT /REST/resource POST /REST/resource?_method=PUT

DELETE /REST/resource POST /REST/resource?_method=DELETE

Use the -method parameter to invoke PUT and DELETE methods over POST. This enables the
application to consume M-Files Web Services that are hosted on top of an older IIS server.

REST path in a query parameter

Some third party components only support web services with a single URL and insist on passing
all parameters as query parameters. M-Files Web Service can be used by such components by hosting
it within an . ashx handler. The M-Files Web Access includes MFWS . ashx handler for such purposes.
This handler is able to invoke any M-Files Web Service resource by passing the resource path in the
restPath query parameter. Table 9.2 below shows M-Files Web Service requests using MFWS.ashx
handler.

20.11.2012 42/42

Table 9.2: Using MFWS.ashx to call M-Files Web Service.

Original request Compatible request

GET /REST/resource GET MFWS.ashx?restPath=resource

POST /REST/resource POST MFWS.ashx?restPath=resource

20.11.2012 43/42

10.
10.1

10.2

=T - T N o e

Code samples
Package

The sample code package for M-Files Web Service can be downloaded from http://www.m-
files.com/mfws/MFWS _Samples.zip. The package contains code samples and utilities in different
languages. The package structure is described in table 10.1.

Table 10.1: M-Files Web Service sample package structure

Directory Description

MFWS Documentation.pdf This document.

/CSharp/Samples ct samples used in this document.
/CSharp/Utilities Cf helpers.

/Java/Utilities Java helpers.

/JavaScript/Samples JavaScript samples used in this document.
/JavaScript/Utilities JavaScript helpers.

M-Files Web Service C’ Client

The M-Files Web Service client contained in the C? utilities enables quick access to M-Files
Web Service. The client takes care of most of the compatibility issues, authentication, serialization
and error handling. Example 10.1 below demonstrates how to use the client to read and edit M-Files
contents.

static void Run ()

{

Create he i
Create he INTA

MfwsClient client

/ 1ctual t n in the Value property.

var result = client.Post<PrimitiveType<string>>(
"/server/authenticationtokens",
new Authentication { Username = "username", Password = "password" });

store

1sed in fu

s way 1t will be L
client.Authentication = result.Value;

ure requests.

'/ Request the c ~ent vaults.

var vaults = client.Get<Vault[]>("/session/vaults");
Select the first available vault.

var vault = vaults[0];

o ~ Ao Fa7
1d 1nsert as he default

vault.Authentication;

20.11.2012 44/42

http://www.m-files.com/mfws/MFWS_Samples.zip
http://www.m-files.com/mfws/MFWS_Samples.zip

34
35
36
37
38
39
40
41
42
43
44
45

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

70
71
72
73

// Now we have a client with vault-access.
// contents.

// Retrieve an object version.
ObjectVersion ov =
Console.WriteLine(ov.Title);

// Perform a check out.
ov = client.Put<ObjectVersion>(
"/objects/0/136/latest/checkedout",

wWe

client.Get<ObjectVersion>(

new PrimitiveType<MFCheckOutStatus> { Value =

MFCheckOutStatus.CheckedOutToMe });

Console.WriteLine ("Checked out: " + ov.ObjectCheckedOut);

// Set the name property.

ov = client.Put<ObjectVersion > (
"/objects/0/136/" + ov.ObjVer.Version +
new PropertyValue

{

// PropertyDef 0 is the built-in 1T
PropertyDef = 0,
TypedValue = new TypedValue

{
DataType = MFDataType.Text,
Value = "New Name"
}
b
// Print the new title.

Console.WriteLine (ov.Title);

// Finally check the object in.
ov = client.Put<ObjectVersion > (
"/objects/0/136/" + ov.ObjVer.Version +

it

"/properties/0",

le property.

"/checkedout",

can now access the vault

"/objects/0/136/latest™"

new PrimitiveType <MFCheckOutStatus> { Value = MFCheckOutStatus.CheckedIn

Py

Console.WriteLine ("Checked out: " + ov.ObjectCheckedOut);

Listing 10.1: Using M-Files Web Service sample client.

20.11.2012

45/42

	M-Files Web Service
	This document

	Overview
	Getting Started
	Prerequisities
	Authenticating
	Example: Acquiring the authentication token

	Reading the resources
	Writing the resources

	Request parameters
	Authentication
	Content type negotiation

	Resources
	Objects
	Objects
	Objects of type
	Object
	Object version
	Object - Deleted
	Object - History
	Object - Comments
	Object - Check out status
	Object - Object title
	Object - Object workflow state
	Object - Object thumbnail
	Object - Relationships
	Object - Relationship count
	Object - Sub-objects
	Object - Sub-object count

	Object properties
	Object properties
	Single object property
	Properties of multiple objects

	Object files
	Object files
	Object file
	 Object file - Contents
	 Object file - File thumbnail
	 Object file - File name

	Uploading
	Temporary upload

	User session
	Session
	Vault
	Authentication token

	Server information
	Server resources
	Server public key
	Server status
	Vaults
	Authentication tokens

	Vault structure
	Vault structure
	Object types
	Object type
	 Object type - Object type icon
	 Object type - External source refresh

	Object classes
	Object class
	 Object class - Class icon

	Property definitions
	Property definition
	Workflows
	Workflow
	Workflow states
	Workflow state

	Value Lists
	Value list items
	Value list item
	 Value list item - Value list item title

	Views
	View
	View contents
	View contents count
	Search view contents
	Favorites
	Favorite object
	Recently accessed by the user

	Resource types
	JSON data types
	Classes
	 ObjectCreationInfo
	 UploadInfo
	 TypedValue
	 ExtendedObjectVersion
	 Authentication
	 Vault
	 PasswordChange
	 PublicKey
	 StatusResponse
	 ExtendedObjectClass
	 WorkflowState
	 FolderContentItems
	 ObjectWorkflowState
	 WebServiceError
	 ExceptionInfo
	 StackTraceElement
	 Results<T>
	 PrimitiveType<T>
	 ObjectVersion
	 ObjectFile
	 ObjVer
	 PropertyValue
	 SessionInfo
	 ObjType
	 PropertyDef
	 Workflow
	 ValueListItem
	 ObjID
	 Lookup
	 VersionComment
	 AssociatedPropertyDef
	 FolderContentItem
	 View
	 ViewLocation
	 ObjectClass
	 ClassGroup
	Enumerations
	 MFObjectVersionFlag
	 MFAuthType
	 MFACLMode
	 MFDataType
	 MFAutomaticValueType
	 MFFolderContentItemType

	Syntax encoding
	Typed values
	Views
	Search conditions

	Error reporting
	Compatibility
	Server compatibility
	File extensions
	HTTP methods
	REST path in a query parameter

	Code samples
	Package
	M-Files Web Service C Client

